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Abstract—Previous studies have categorized code comments
for various programming languages to produce high-quality
code comments that can improve code readability and benefit
maintenance. However, it still requires more effort to identify
the main information contained in code comments. Pre-trained
language model has shown promising results for solving software
engineering tasks. In this paper, we propose a model for code
comment classified using the recent pre-trained language model
specialized for code-specific tasks (i.e., CodeT5). We introduce
expert-predefined features to enhance the model’s classification
performance. Our evaluation on the official dataset shows that it
outperforms the baseline by improving the precision (+65.9%),
recall (+147.3%) and the F1-score (+112.5%) of the classification.

Index Terms—Pre-trained language model, code comment

I. INTRODUCTION

With the evolution of software projects, effective program
comprehension is increasingly crucial. During software de-
velopment, developers usually write code comments to help
others understanding the structure, functionality, and behavior
of the code, as well as the relationship between different
components in the whole project [1], [2]. As code comments
contain various types of information, it can help the developers
to modify and maintain existing program, debug faults in code,
and improve the performance and reliability of the software.

In recent years, researchers have carried out a series of stud-
ies with respect to code comments from various perspectives:
code comment generation [3]–[5], inconsistent code comment
detection [6]–[8], code comment classification [9]–[14]. In
this paper, we focus on the code comment classification. In
general, code comments are written in natural language mixed
with source code elements, unlike software defects for which
there is a relatively recognized category, the current category
based on code comments is still not well developed, making
it difficult to discover potentially generic features of code

comments in different programming languages. Pascarella et
al. [9] deeply analyze the code comments in Java open-source
projects to acquire the definition of the classification types
and achieve automated classification using machine learning.
To explore the similarities in code comments of different
programming languages, Rani et al. [12] manually analyzed
the code comments of popular open-source projects in Python,
Java, and Smalltalk to define their classification types. Mean-
while, they integrated natural language processing (NLP) and
text analysis techniques to extract potential semantic and
syntactic features of code comments in combination with
Random Forest to automatically identify the type of code
comments.

The aforementioned studies are usually based on supervised
machine learning classification algorithms together with lim-
ited numbers of manually labeled data. They have several
limitations. First, these methods tend to require complex
feature engineering and analysis for better performance. The
strong reliance on pre-defined features for new tasks makes it
difficult to generalize to new tasks and do not make full use of
the training data available. Second, they often rely on a limited
number of manually labeled source code comments, which is
usually insufficient for training a classifier thus leading to a
poor performance. In this paper, we use the newly proposed
pre-training and fine-tuning diagram to help improving the
performance of code comment classification. Large pre-trained
programming language models (for example, CodeT5 [15],
CodeBert [16], and CodeReviwer [17]) are usually pre-trained
on a large number of software engineering domain specific
corpus, the general knowledge learned during this process can
be used for the downstream tasks by fine-tuning or prompts-
tuning strategies, which can be a promising direction to tackle
the limited human labeled data. Meanwhile, by using the sub-
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word algorithm, Byte-Pair-Encoding (BPE) [18], during data
processing, we tackle the out-of-vocabulary (OOV) problems
in the previous mentioned studies.

II. TOOL DESCRIPTION

A. Data Preprocessing

Data pre-processing is performed on the training set as well
as the test set to improve the accuracy and performance of the
model. The code comments of a class are split into individual
sentences. We normalized each sentence by removing punctu-
ation marks such as “#%ˆ.?” from each sentence, as well as
redundant spaces, and converting all words to lowercase.

Next, we identified the features in each sentence based
on expert-predefined characteristics to capture the category-
specific features for improving the recognition of the model
for each category. In this tool paper, expert-predefined features
are adopted from the NLP features extracted by Rani et al [12].
These features are phrases or words that belong to a particular
category. For example, in the category of usage, the NLP
features extracted are sees example, results and so on. The
recognized features will be tagged with <s>features<\s> to
make the model pay more attention to the key features in
the code comments. Listing 1 shows a pre-processed instance
from the testing dataset in the category example of json format.
The comment sentence refers to a raw code comment, while
the pre sentence in line 8 is a comment with only special
characters removed, and final sentence in line 9 is a feature-
tagged code comment based on pre sentence. In this example,
the feature can be used has been highlighted for guiding the
model to learn potential patterns.
1 {
2 "comment_sentence_id": 378,
3 "class": "BlInfiniteItemAnimationsFinished",
4 "comment_sentence": "i can be used, for example,

to delay an action in a data set until
currently running animations are complete.",

5 "partition": 1,
6 "instance_type": 0,
7 "category": "Example",
8 "pre_sentence": "i can be used for example to

delay an action in a data set until currently
running animations are complete",

9 "final_sentence": "i <s>can be used</s> for
example to delay an action in a data set
until currently running animations are
complete"

10 }

Listing 1: Example of pre-processed dataset

B. Model Training

Since the proposal of GPT and Bert, the pre-training and
fine-tuning paradigm has been widely used in the software
engineering domain. A typical language pre-trained model
refers to pre-training a large model on massive unlabelled
corpora by self-supervised objectives, and fine-tuning the
model on downstream tasks (i.e., program understanding and
generation tasks) with task-specific loss. Inspired by this
paradigm, in this tool paper, we adopt CodeT5 [15], a pre-
trained encoder-decoder model that takes into account the
identifier information in the source code, which is suitable for

our task of classifying code comments. CodeT5 is an improved
model with the same architecture as T5 [19], a framework that
converts all NLP tasks uniformly into Text-to-Text tasks. The
prefix “Classification:” is introduced to each pre-processed
code comment to indicate the model what task is performed.
After tokenizing a code comment, the special tokens [CLS]
and [SEP] are concatenated into the sequence to mark the
beginning and end of the text sequence. We fine-tuned CodeT5
based on our pre-processed dataset. Moreover, we also used a
pre-trained tokenizer based on the Byte-Pair Encoding (BPE)
algorithm for tokenizing the code comments. Figure 1 depicts
the overall workflow of the proposed method.
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Fig. 1: The overall workflow for fine-tuning CodeT5 for Binary
Classifier code comments

III. EXPERIMENT

A. Dataset

We evaluate the model using the dataset provided by the
official competition [20] in NLBSE20231. The dataset was
extracted from 20 popular open-source projects written in
three different programming languages (i.e., Java, Pharo, and
Python) and was manually labeled by Rani et al. [12]. In par-
ticular, the Java dataset has 2,418 code comments distributed
in seven categories: summary, pointer, deprecation, rational,
ownership, usage, expand. The Pharo dataset has 1,765 code
comments distributed in seven categories: key messages, intent,
class references, example, key implementation, responsibilities,
collaborators. The Python dataset has 2,555 code comments
distributed in five categories: summary, parameters, usage, de-
velopment notes. In the training stage, based on the proportion
of positive examples in the training set, the same proportion
of data from the positive and negative examples in the entire
training set is taken as the validation set data respectively.
Table I shows the statistics of the dataset.

1https://nlbse2023.github.io/tools/
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TABLE I: Overview of dataset

Language Category Training Testing Total
Positive Negative Positive Negative

Java

Expand 505 1426 127 360 2418
Ownership 90 1839 25 464 2418
Deprecation 100 1831 27 460 2418
Rational 223 1707 57 431 2418
Summary 328 1600 87 403 2418
Pointer 289 1640 75 414 2418
Usage 728 1203 184 303 2418

Pharo

Responsibilities 267 1139 69 290 1765
Key messages 242 1165 63 295 1765
Key implementation points 184 1222 48 311 1765
Collaborators 99 1307 28 331 1765
Example 596 812 152 205 1765
Class references 60 1348 17 340 1765
Intent 173 1236 45 311 1765

Python

Expand 402 1637 102 414 2555
Parameters 633 1404 161 357 2555
Summary 361 1678 93 423 2555
Development notes 247 1792 65 451 2555
Usage 637 1401 163 354 2555

B. Metrics

To evaluate the effectiveness of our model, we adopt the
commonly used metrics in classification tasks: precision, re-
call, and F1-score. The metrics are defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2
P ·R
P +R

(3)

TP denotes true positive, FP refer to false positive, TN
means true negative, FN denotes false negative.

C. Implementation

We use HuggingFace Transformers2, PyTorch3 to fine-tune
the CodeT54. The Adamw was used, a weight-decay-based
optimizer implemented by the transformers library, where the
epsilon factor is set to 1e-8 and the learning rate is set to 5e-
5 for the Adam optimizer. Furthermore, the maximum total
source sequence length after tokenization was set to 256 based
on the length of the original code comments in the entire
dataset. Sequences longer than this will be truncated, and
sequences shorter will be padded with a specific number (0
in our method). We trained 120 epochs for each category
about different programming languages. We set the batch
size to 8. All experiments are conducted on a multi-core
serve with 3.20GHz 8-core Intel(R) Xeon(R) Gold 6134 CPU,
two NVIDIA TITAN V GPUs and 192GB of RAM, running
Ubuntu 16.04 operating system with Linux kernel 4.15.0.

IV. RESULTS

We evaluate our approach against the provided baseline (i.e.,
classifiers based on the Random Forest model) [12]. Table II
demonstrates the performance of model for the test dataset.
Overall, our model can achieve 72.82 precision, 60.58 recall,
and 65.67 F1-score, which improves the baseline model [21]
by 65.9%, 147.3%, and 112.5%. Moreover, for each category

2https://huggingface.co
3https:pytorch.org
4https://huggingface.co/Salesforce/codet5-base

of comments shown in Table II, our model can gain better
classification results than the baseline model. Specifically,
the baseline model only scores 0 on all three metrics in
Deprecation category and our model can earn 90.48, 70.37,
and 79.17 on these three metrics.

TABLE II: Code comment classification results

Language Category CodeT5Classifier Baseline

Precision% Recall% F1-score% Precision% Recall% F1-score%

Java

Expand 66.97 57.48 61.86 35.10 26.80 30.40
Ownership 100.00 100.00 100.00 100.00 68.00 81.00
Deprecation 90.48 70.37 79.17 0 0 0
Rational 75.61 54.39 63.27 63.00 29.80 40.50
Summary 70.79 72.41 71.59 38.50 28.70 32.90
Pointer 81.13 57.33 67.19 66.70 24.00 35.30
Usage 81.13 70.11 75.22 54.10 35.90 43.10

Pharo

Responsibilities 65.57 57.97 61.54 59.00 33.30 42.60
Key messages 86.05 58.73 69.81 31.20 15.90 21.10
Key implementation points 64.29 37.50 47.37 17.90 10.40 13.20
Collaborators 60.00 32.14 41.86 46.70 25.00 32.60
Example 87.07 84.21 85.62 76.70 43.40 55.50
Class references 53.85 41.18 46.67 33.30 5.90 10.00
Intent 88.64 86.67 87.64 57.70 33.30 42.30

Python

Expand 55.56 49.02 52.08 26.30 19.60 22.50
Parameters 75.33 70.19 72.67 51.40 22.40 31.20
Summary 69.32 65.59 67.40 12.30 7.50 9.30
Development notes 43.18 29.23 34.86 17.20 16.90 17.10
Usage 68.66 56.44 61.95 46.90 18.40 26.40

Overall 72.82 60.58 65.67 43.90 24.50 30.90

In contrast with Pharo and Python, the best overall classi-
fication performance has been obtained in the Java categories
that can be attributed to the fact that developers frequently
use annotations such as @author, @deprecation, @since, etc.
to annotate Java code. The keywords in the annotations are
unique in these categories, which makes it easier for the
model to identify and classify these comments accurately. For
instance, we can observe from the word distribution in the
positive dataset for the ownership category (Fig.2a) and the
negative dataset (Fig.2b) the keywords in Java annotations help
to distinguish between the positive and negative examples.
Our model achieves full scores in the Ownership category.
Meanwhile, we think that the worst F1-score for Python code
comments could be caused by the limited number of expert-
predefined features provided, with only 2751 available as
compared to 5436 for Java and 4152 for Pharo. Our model
only achieves 34.86% F1-score.

The self-attention mechanism in CodeT5 makes it capa-
ble of efficiently capturing the relationships between words.
Compared to the baseline approach to extracting features, our
model can learn the essential knowledge of natural language
from massive unlabeled data and lead to such significant
improvements. The results also indicate the effectiveness of
leveraging pre-trained programming language model for code
comment classification. Although our model cannot achieve
particularly good results on three categories (Key implemen-
tation points, Class references, and Development notes), the
baseline results prove the extreme challenges to classify these
categories accurately, and our method is also better than
baseline on these categories.

V. RELATED WORK

Code comments classification has long been studied. Pre-
vious studies [9]–[14] usually use text analysis techniques
together with machine learning classification algorithms to
predict the type of source code comments. For example,
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(a) Word Cloud of Ownership
Positive Dataset

(b) Word Cloud of Ownership
Negative Dataset

Fig. 2: Word Cloud of Ownership Dataset

Pascarella et al. [9]–[11] developed a taxonomy of source code
comments. Subsequently, they employed supervised machine
learning algorithms (naive Bayes, Random Forest and J48,
etc.) to build an automated classifier based on some manual
labeled data derived from the above mentioned taxonomy.
Similar, Rani et al. [12] developed a multi-language (Python,
Java, and Smalltalk) approach for class comment classifi-
cation. They used a feature extraction tool, named NEON,
to infer all patterns characterizing the comment sentences
and adding them as features for classification. Different from
previous mentioned works, we try to explore the possibility
of classifying code comments through the pre-trained large
language models. We choose CodeT5 [15] because it is pre-
trained on a large number of software engineering domain-
specific corpus like CodeSearchNet [22], and we can use
those domain-specific knowledge to improve the accuracy by
transfer learning (fine-tuning or prompts-tuning).

VI. CONCLUSIONS

Inspired by the recent success in using pre-trained language
model for software engineering task, we propose a model
for code comment classification using CodeT5, a pre-trained
programming language model. Our evaluation shows that it
outperforms the baseline by improving the precision, recall,
and F1-score of the classification.

DATA AVAILABILITY

The experimental data and source code are available at
GitHub [23] and the trained model at Zenodo [24].
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